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ABSTRACT

In this paper a novel method for realtime spectral envelope extraction, especially suitable for human voice but also for
generic  audio signals,  is  presented  (codename WHISPER -  Weighted HIstogram SPectral  Envelope  extRaction).  The short-time
Fourier magnitude spectrum is progressively smoothed in frequency domain by means of a modified bi-directional 1-pole low-pass
filter with increasing cutoff period and lifted towards prominent peaks. At every step a cumulative periodicity histogram is populated
with the size of the gaps forming between local maxima left in the smoothing curve, weighted by their pivotal magnitude. Under the
right operating conditions, a highest peak always tends to grow at the histogram position corresponding to the fundamental frequency
(F0) in case of periodic signals, even corrupted by noise, or to a suitably low-end position in case of non-periodic or noise signals, in
both cases representing the optimal spectral envelope sampling period P. The cutoff period is continuously updated as the histogram's
weighted average and the process iterated until no trace of periodicity can be detected in the growing curve any more, according to the
periodicity histogram being computed and to a second volatile histogram populated with the gaps forming at every pass. In few
iterations a smooth and time-stable envelope curve, never under- or over-fitting, is grown at very little computation cost, without
resorting to any peak-picking, spline interpolation or cepstral means. In case of harmonic spectra, the algorithm has also the potential
to provide pitch and harmonics-to-noise ratio information, making it suitable for integrated spectral envelope and pitch detection.

1. Introduction

 Estimation  of  the  spectral  envelope  is  both  important
and advantageous in many branches of physics as well as audio
engineering and digital signal processing. In music applications
in particular, reliable estimation of the evolving spectral envelope
of  a  sound  opens  up  a  wide  range  of  advanced  sound
(re-)synthesis  and  manipulation  techniques  hardly  achievable
otherwise,  and  which  can  be  implemented  within  the
consolidated  Phase  Vocoder1 or  similar  frameworks.  Some
examples  are  inverse-filtering  and  impulse  response  recovery,
spectral  whitening,  pitch  shifting  with  formant  preservation2,
creative manipulation  of a vocal timbre, and surely many others.
Unfortunately at the time of writing no  conclusive methods for
spectral envelope estimation have been produced by the current
art,  being the  very problem plagued by some unavoidable  ill-
conditioning.
Several methods have been proposed in literature though, some
even quite  complex and computationally demanding,  each one
with its own both strong and weak points3,4,5 and others

The knowledge of a spectral envelope curve E(w) such that

S(w) = W(w)·E(w)

where  S is  a  given  magnitude  spectrum and  W is  a  flattened
(“whitened”) version of it which we of course aren't to know, is
by  definition  impossible  and  no  unique  solution  exists.  We
cannot, in fact, discover two numbers given only their product;
the most we can do is estimate them if we have some clues to do
that.

Actually, despite inifitine pairs of  W and E exist which give the
starting  spectrum  S when  multiplied  together,  only  a  limited
subset of such pairs is what we aim at: the wanted envelope curve
shall 1. pass thru all prominent peaks in S only and 2. never pass
under  any  peaks  in  S.  The  big  problem  being  that  no
mathematically  sound  definition  can  be  given  to  «prominent»
peaks,  despite  their  naked-eye  determination  may look trivial.
The only vague definition we can attempt for them is the most
signifying peaks which represent the spectral energy distribution
thru frequency left after an imaginary carving operation.
Only in  case  of  a  perfectly harmonic  spectrum the  prominent
peaks coincide unambiguously with the peaks of the harmonic
series,  while  in  all  other  real  world  scenarios  (as  in  case  of
harmonic spectra mixed with or constituded entirely by noise or
non-harmonic  spectra)  their  discrimination  may  become
problematic.  A robust  and  reliable  envelope  estimator  (EE)  is
expected  nevertheless  to  return  a  consistent  curve  in  any
situation,  even  in  case  of  spectra  representing  aspirated
(unvoiced) vowels, unvoiced consonants (as the letters F or T),
voiced consonants containing a noise portion (as the letter S in
Please  or  J  in  the  French  Je)  or  even  percussions  or
colored/filtered noise - a fact this often overlooked in literature
(see Fig.1)

Missing therefore any  local criterion to decide whether a given
peak can be labeled as prominent or not, the best we can do is
aiming at a global estimate of an optimal frequency-domain grid
period  P to  properly downsample the magnitude  spectrum  in
order to obtain an envelope curve which can satisfy the first of
the simple requirements listed above, even at the cost (negligible
in most real world cases) of losing accuracy in all those cases
where such an optimal period is locally varying, as in case of



polyphonic or deliberately mixed spectra. We even dare saying
that no spectral envelope estimation attempt can be pursuited at
all without a preliminary knowledge of P.
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Fig. 1  Spectral envelopes of non-harmonic sounds: (1a) the aspirated (unvoiced) letter A
and  (1b) a crash cymbal

It  is  evident  that  in  case  of  harmonic  or  predominatingly
harmonic spectra,  P corresponds to  F0.  In  case  of  polyphonic
spectra,  P shall  arguibly correspond to the fundamental  of  the
series whose overall magnitude is the largest.  In  case of noise
instead, where prominent peaks are much more dense, P shall be
a  suitably  small  value  in  order  to  proper  sample  the  highly
irregular spectral magnitude shape.

The computation of a spectral envelope translates ultimately to a
smoothing  process  (plus  a  lifting  process),  no  matter  which
method is  adopted.  If  cepstral  smoothing is  employed (a  very
disadvantageous choice in our opinion, even computationally), a
cepstral order has to be imposed. In case of LPC, a definite LPC
order  has  to  be  chosen  aswell.  If  smoothing  is  carried  in
frequency domain  treating the  magnitude  spectrum as  a  time-
domain signal, once more a definite cutoff frequency for the kind
of low-pass filter used shall be decided. Even when proceeding
with peak-picking methods followed by interpolation, a kind of
distance factor or the width of a sliding maximum window shall
be similarly imposed, to decide which peaks to select and which
ones to discard, which still  indirectly translates to a smoothing
process. It is evident that there can be no magic number we can
use  as  the  optimal  smoothing  factor  for  all  kinds  of  spectra,
because  such  value  is  strictly  dependent  on  the  short-time
spectral structure. A smoothing value producing a tightly fitting
curve  for,  say,  a  harmonic  spectrum  with  a  fundamental
frequency  of  500  Hz  would  produce  a  curve  which  starts
descending thru the prominent  peaks  with a  fundamental  of  1
Khz  (under-fitting)  and  conversely  a  too  coarse  curve  over-
estimating  the  true  spectral  trend  (over-fitting)  with  a
fundamental of, say, 200 Hz or lower (see Fig.2).

Any method not considering the strict dependency of  P on the
spectral content is doomed to fail producing poor results.
Some authors suggest standard autocorrelation (AC)6 as a mean
to estimate F0 and to use it as smoothing factor. Such a choice
unfortunately is valid only in case of perfectly harmonic spectra
(as in case of  unambiguous voiced segments);  in case of  non-
harmonic spectra like noise, any pitch detection (PD) algorithm
like  AC  or  the  Spectral  Comb7 or  the  Harmonic  Product
Spectrum  tend  to  return  randomly  fluctuating  values  often
located in the high frequency end, which is actually the opposite

to what we need. In cases of ambiguous spectra instead, most PD
algorithms would simply return meaningless values which once
more would have nothing to do with the optimal grid period P.
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Fig.2  effect of inadequate choice of the sampling period P either too small or too large,
causing under-fitting (2a) or over-fitting (2b) respectively

It is therefore evident that a novel method for estimating  P is
required; and since, as we have seen, P always corresponds to F0
in  case  of  harmonic  spectra,  the  same  algorithm is  indirectly
expected to provide integrated pitch detection (PD) capability as
a byproduct of the spectral envelope estimation, a fact which can
of course be profited.

In  addition,  the  computed  spectral  envelope  curves  shall  be
reasonably time-stable,  i.e.  not  flicker  between similar  spectral
frames:  the  similarity  between  the  magnitude  spectra  must
always  match  the  similarity  between  the  respective  envelope
curves,  otherwise  audible  artifacts  will  occur  with  many final
applications. One requirement to grant time-stability is avoiding
or at least reducing to a minimum any binary or abrupt decision
as  those  involved  with  any  peak-picking  scheme  or  max/min
operations,  where  even  a  slight  change  in  some  secondary
spectral  detail  could  influence  the  result  dramatically.  A
geometrical  and  where  possible  also  continuous  approach  has
therefore  to  be  preferred,  without  making  any  discrete
assumptions about the structure of the spectrum itself.

2. Principle overview

Before  describing  the  devised  algorithm in  detail,  we
shall  introduce  three  fundamental  concepts  on  which  it  is
intrinsically based

2.1. Envelope curve growth

If  we  know  the  optimal  value  for  P (in  bin  units),  by
progressively applying a bi-directional  1-pole low-pass filter  F
thru the short-time magnitude spectrum M(w) such that 

M'0(w)=M(w);   M't(w) = F(M't-1(w),P)

using  P as  cutoff  period,  followed  at  every  pass  by  a  curve
“warping”  stage  where  the  growing  curve  M'(w) is  “pulled”
towards  M(w) at  every point  (peaks)  wn in  the  latter  where  it
results  M'(wn) < M(wn), the wanted envelope curve is perfectly
and nicely fit in few passes (usually 6-7 or even less).
The ratio between the average of the gaps between local maxima



left in M' at every iteration and P is a quite reliable indicator of
when to stop the process, to be left with an envelope curve which
is never either under- or over-fitting (this won't be, however, the
stop criterion adopted by the present algorithm, since P can't be
always estimated unambiguously).
A smooth and nice envelope  curve  passing thru  all  prominent
peaks (prominent according to P) is thus naturally grown at very
little  computation  cost,  without  resorting  to  any  peak-picking,
spline interpolation or even cepstral methods.
The  resulting  curve  fits  the  magnitude  spectrum  even  more
accurately when operating on a perceptual vs. linear scale, like a
log scale (taking infinities into account) or a normalized dB scale
with linear “toe” from minus infinity to -60 dB, for example.
The problem of computing a spectral envelope reduces therefore
to the problem of estimating the optimal value of  P for every
short-time spectral frame.

2.2. Estimation of P

As a  general  rule,  by  progressively  smoothing  the  magnitude
spectrum M(w)

     M'0 (w) = M(w);   M't (w) = F(M't-1 (w), pt )

with an ever increasing filter factor pt covering a suitable range,
and populating at every pass t a cumulative histogram H(g) with
the  m gaps  gn = wn -  wn-1 forming between the resulting local
maxima  wn in  the  smoothing  curve  M'(w),  weighted  by  their
pivotal magnitude M(wn),

Ht(wn-wn-1) = Ht-1(wn-wn-1) + M(wn ),   n=0...m-1

the highest  peak always  tends to form at  the position in  H(g)
corresponding to the most signifying spectral  spacing (P).  The
result is  virtually immune from gross errors (unless in presence
of  actual  sub-  or  upper  harmonic  series),  can  reveal  a
fundamental F0 even with very low harmonic-to-noise ratio (see
Fig.3), and has the desired tendency to grow in the low end in
form of a hyperbolic cluster in case of predominating noise.

3a

Fig.3  A couple  of
spectra  with
mixed  harmonics
and  noise  above
the  respective
plots of H(g). (3a)
A breathy letter A
(F0  ≈ 400  Hz)
with  a  low-
frequency  bump
(unfiltered)  which
does  not
minimally
influence  the
histogram.  (3b)  A
harmonic  series
with  fundamental
of 1.5 KHz almost
submerged  in
noise,  notice  how
the  periodicity
histogram  can
still  resolve  a
clear  peak  at  1.5
KHz

3b

This “magic” happens because at every pass the less prominent
peaks  get  smoothed  out  and  disappear  first,  while  the  most
prominent ones tend to last for longer. 
However, if we don't stop smoothing in time, from some point on
“high  order”  gaps  corresponding  to  local  maxima  in  the  very
smoothing curve will start building up in the higher histogram
end causing confusion.

Since  this  general  principle  can  really  be  implemented  with
infinite variations, its exact bias and robustness against noise and
gross errors is highly dependent on the specific implementation
details.
For  example,  many  IIR  filtering  schemes  can  be  adopted  to
smooth M(w) as if it were a time-domain signal: from a simple 1-
pole low-pass filter to a maximizing “umbrella” function (either
triangular  or  exponential)  to  fitting  gaussians  at  every  peak
covering any peaks below it; what matters is applying the filter
bi-directionally  to  grant  horizontal  symmetry  around  peaks  in
M'(w) (symmetrical  impulse  response).  In  our  case  the  most
effective filter turned out a two-passes “maximizing” 1-pole low-
pass filter operating maximization against the original magnitude
spectrum in the first pass only:

  left to right:
M'(w) -> max(M(w) + k (M'(w-1)-  M(w)), M(w) )

w=0...nbins-1 

   right to left:
M'(w) -> M'(w)+ k (M'(w+1)-M'(w) )

w=nbins-1...0

where

k = p/(2π+p)

being  p  the cutoff period in bin units and  nbins the number of
FFT bins in the half-complex spectrum, that is half the frame size
plus one.
This filtering scheme also reduces shifting of local maxima to a
minimum  extent,  which  would  result  in  smearing  in  the
histogram otherwise.
 

2.3. Harmonic considerations on the envelope curve
 

As  a  valid  criterion  to  decide  whether  a  magnitude
spectrum has been enveloped properly by a fitting curve without
leaving room for ambiguity, we can consider the periodicity of
the same curve. In general we can expect that a spectral envelope
will hardly be periodic; when this is the case, we should rather
suspect that any residual periodicity is a clue of an underestimate
of  P still  allowing  the  harmonic  structure  to  emerge  (under-
fitting, see Fig.  2a again). This criterion alone  almost suggests
another way of estimating P, i.e. choosing the lowest value of P
for  smoothing which  does  not  generate  any periodicity  in  the
resulting curve any more.
Unfortunately there  are  actually many real  world  situations in
which an envelope presents instead with a substantially periodic
structure,  as  in  case  of  harmonics  with  alternating  higher  and
lower magnitudes or even in case of formants accidentally placed
on nearly harmonic frequency positions.
Therefore, if P is known, we shall check whether a periodicity of
width  P is still  detectable in the final curve, rather than just a
periodicity of any width.
To detect periodicity, it will be convenient to resort to a partial
histogram (i.e cleared at every iteration) H'(g) populated with the
per-pass gap counts as described in 2.2 but always incremented
by unity, i.e. without scaling by the pivotal gap magnitude, and



check  the  number  of  entries  in  proximity  of  its  position  g
corresponding to  the  supposed  P candidate.  Such number  will
likely be zero once the curve under investigation does not contain
traces of periodicity of width P any more (see Fig.4) 

4a

Fig.  4  Periodicity
analysis  of  the
growing  envelope
curve

(4a)  On  top  the
spectrum  of  the
letter  O,  F0  ≈350
Hz,  sung  by  a
female  individual.
Below  the
respective
periodicity
histogram H(g) 

(4b) Growth of the
envelope  curve  at
an  early  pass;
below  we  can
examine the plot of
H'(g)  for  the same
pass  (every  grid
row  represents
unity): a high peak
(gap count) can be
detected  at  the
position  of  the
highest  peak  in
H(g)  (P),
confirming  that
there  is  still  a
substantial  degree
of  periodicity  P in
the envelope curve.

(4c)  Growth of the
same  envelope
curve  at  a  more
advanced  stage:
the  plot  of  H'(g)
below  shows  that
periodicity  P  is
decreased  but  still
present.

(4d)  Envelope
curve  ready.  The
plot  of  H'(g)
confirms  no  more
periodicity  P  (i.e
around 350 Hz)  in
the finished curve.

4b

4c

4d

3. The envelope extraction algorithm in
detail

Experimentation suggested that there are almost infinite
ways to combine the three key principles exposed in 2., but only
few combinations produce robust and reliable algorithms which
empirically perform well in a wide collection of notable sample
cases.
Ideally, the algorithm should be composed of a P estimation stage
followed  by  an  envelope  growth  stage.  This  approach  would
perhaps result more reliable but at a much higher computation
demand, since the magnitude spectrum should be scanned several
tens times in total; also by doing so we would be computing a
growing curve twice, the first time only as a “probe” curve to be
later discarded.
Therefore we decided to adopt a “tandem” approach, where the
periodicity  histogram  is  computed  while  growing  the  actual
envelope curve, and P gets determined progressively converging
to its supposed value during the process.

Initialization:

-As input a short-time half-complex magnitude spectrum R(w) =
|S(w)| of nominal frame size z, 0<=w<=z/2 is supplied. From the
algorithm's  perspective,  whether  the  input  spectral  frames  are
windowed  (by  Hann  windows  for  example)  or  not  makes
absolutely no difference;  care must be taken however to avoid
windows producing ringing side-lobes as in case of rectangular
zero-padded  windows,  which  could  understandably  trick  the
algorithm by introducing false periodic components.

-Two magnitude arrays  M(w) and  M'(w) are initialized with the
magnitude spectrum R(w) converted to a normalized dB scale. In
our example we are using a normalized logarithmic scale with a
linear “toe” in the initial seventh from -∞ to -60 dB

M(w) = M'(w) = {
R(w)>=10-3 : Log(R(w)) · 2/7 +1

R(w)<10-3 : R(w)·103/7

-A cumulative, weighted periodicity histogram H(g) is cleared

-The filter cutoff period p is assigned an initial small value which
appears adequate of z / 512

Iterations:

-A volatile, un-weighted periodicity histogram H'(g) is cleared

-M'(w) is progressively smoothed by using a bi-directional 1-pole
low-pass  filter  maximizing  against  the  reference  magnitude
spectrum M(w) in the first pass only:

  left to right:
M'(w) = max( M'(w) + k (M'(w-1)-  M'(w)),   M(w) ),   w=0...z/2

   right to left:
M'(w)= M'(w)+ k (M'(w+1)-M'(w) ),  w=z/2...0

where
k = p/(2π+p)

In theory we could avoid the maximization, but by doing so we
reduce shifting of local  maxima in the progressively smoothed
envelope curve, which would cause smearing in the histograms.



It has to be noted that the second pass (from right to left), not
performing any maximization against  M(w), will naturally cause
the growing curve to descend below the level of the prominent
peaks (the same would happen if we were using a plain low-pass
filter of course). This is something we must allow and which will
be compensated in the next operation, in order for the resulting
curve to better fit the magnitude spectrum

-M'(w) is “pulled” against M(w) at all points wm where

 M(wm) > M'(wm),   M(wm) > M(wm-1),   M(wm) > M(wm+1)

This is achieved by segment-wise multiplication of M'(w) in [wm ,
wm'] by a linearly interpolated factor r:

M(wm') > M'(wm'),  M(wm')>M(wm' -1),  M(wm')>M(wm'+1);
m' > m;

r(w) = M(wm)/M'(wm) +
( M(wm')/M'(wm') - M(wm)/M'(wm) ) · (w-wm) / (wm' -wm);

M'(w) = M'(w) · r(w),  w= wm ... wm'

where wm  and wm'  are two consecutive local maxima in M(w)

-M'(w) is  scanned to identify gaps between local  maxima.  For
every gap  gn= wn - wn-1   found, where

M'(wn )>M'(wn -1), M'(wn )>M'(wn+1),
M'(wn-1 )>M'(wn-1 -1), M'(wn-1 )>M'(wn-1+1),

H(g) is  populated  cumulatively,  weighting  every  entry  by the
gap's pivotal magnitude such that

Ht(gn) = Ht-1(gn) + M(wn)

while  H'(g) is  populated  by  just  incrementing  the  respective
entries by one unity (plain gap count), such that

H't(gn) = H't(gn) +1

-The filter cutoff period p is updated as the weighted average of
H, which can be thought as its barycenter

        Σg=0...z/2  g ∙ H(g)

p =   —————————

      Σg=0...z/2  H(g)

This  effectively  allows  p to  grow  towards  the  actual  optimal
unknown  value  P,  and  represents  a  more  elastic  (continuous)
criterion than simply assigning p the position of the highest peak
in H. It can easily be seen that in the ideal, unrealistic case of just
one peak in H the weighted average corresponds to its position.

-As stated in 2.3, the process must be stopped once no trace of
periodicity of order P is detectable in M' any more. P is however
something  we  can't  know  precisely.  We  just  have  a  value  p
growing  towards  P more  or  less  quickly  depending  on  the
spectral structure, but which is meant to be used uniquely as the
filter  cutoff  period,  and  a  periodicity  histogram  H which  is
expected, but not guaranteed, to form a substantial peak (when
not the highest) at position P. In the ideal case it would be enough
to stop the iterations once the value of  H'(f) becomes zero or
however  falls  below some safety threshold,  where  H(f) is  the
highest peak in  H. Here however it is about the mathematics of

uncertainty, and any incautious operation could compromise the
result.  Also,  as  we  have  stated  previously,  similar  abrupt
decisions must be avoided because potentially detrimental.
A more elastic but equivalent criterion, which was found to work
particularly  well  in  pretty  all  situations,  is  stopping  when  the
average of H' weighted by H falls below unity. It is evident that
in  the  unrealistic  and  ideal  case  where  H(P)  is  the  only peak
present in H, the criterion reduces to the abrupt decision above.
The process is therefore stopped once

Σg=0...z/2  (Σi=-n...n  H'(g+i)) ∙ H(g)

       —————————————————  < 1

Σg=0...z/2  H(g)

As it  can  be  seen,  we  are  here  considering  the  sum of  2n+1
values  around  every  value  of  H'(g) rather  than  just  H'(g),  to
account  for  possible  histogram  smearing  caused  by  rounding
errors or peaks shifting during the smoothing process; a value of
n=1 appears suitable in practice, at least for 1024<=z<=8192.
When the weighted average above falls below unity (considering
possible rounding errors, one may actually want to check if the
result is < 0.9999999999), we can judge safely enough that the
growing envelope curve in M' does not substantially contain any
more  traces  of  periodicity of  order  P,  and  the  process  can  be
stopped.

The curve in  M' can now be converted back to linear scale and
returned as the resulting envelope.

4. Pitch detection potential

As we have already mentioned in 1., the capability of
the  presented  algorithm to  provide  PD functionality has  to  be
considered a nice bonus. Despite in the present work we intend to
focus mainly on the envelope estimation aspect, we shall even
mention briefly how this intrinsic feature could be exploited and
its limitations.
As we have seen, H(g) will contain a highest peak at the position
corresponding  to  F0  (in  bin  units)  in  cases  of  unambiguous
harmonic  spectra;  in  case  of  ambiguous,  polyphonic  or  non-
harmonic spectra, the position of the highest peak will however
still  correspond  to  an  optimal  frequency  domain  period  P to
downsample the envelope curve. A number of ambiguous cases
can show up in the real world though;  if we decide to employ
H(g) for PD purposes, we can't afford any uncertainty, whereas
an  imprecise  estimate  of  P (unless  completely  off)  is  still
acceptable  for  producing  an  overall  correct  envelope  curve
(within  some  tolerance).  The  same  of  course  applies  to  the
standard AC method, where its “raw” (i.e non processed) result
intended as the highest peak is consistent with the pitch only in
case of non-ambiguous frames.
One can realize immediately that  the  biggest  limitation of  the
present method is the incapability to detect pure tones, being the
algorithm fundamentally based on harmonicity analysis.
After  all,  from an  EE perspective,  the  algorithm as  it  is  does
probably the intended job even in this situation and its behaviour
should  not  be  altered:  what  the  envelope  of  a  spectrum
constituted  substantially  by a  single  peak  is  expected  to  look
like ?  Should it result in a large over-fit of the peak as though it
had some invisibly small harmonics, or rather (see Fig. 5i) in a
tight  fit  almost  resembling  the  original  magnitude  spectrum ?
This remains an open question, even if we suspect that the second
answer is perhaps the most correct.



In the light of that, the employment of the present algorithm to
detect  the  pitch  of  pure  sinusoids  or  comparable  sounds,
including  whistles,  has  to  be  ruled  out  from  beginning.  For
processing human voice instead, which is harmonic in its  own
nature, the chance of estimating both the spectral envelope and
the  pitch  of  a  spectral  frame  with  a  single  O(n)  algorithm is
particularly  appealing;  one  popular  example  could  be  pitch
correction with formant preservation (“Autotune”).
A fundamental requirement for every PD algorithm is the ability
to  provide,  in  addition  to  the  pitch  estimate,  the  detection  of
voiced  and  un-voiced  (VUV)  segments,  so  that  in  case  of
segments  judged  un-voiced  the  respective  pitch  value  will  be
simply considered meaningless and ignored (or not computed at
all). What to do in such cases is clearly application-specific: for
example,  a  tuning  correction  software  might  want  to  simply
return unchanged a segment considered un-voiced, while a voice-
driven synthesizer might rather want to interpolate between the
pitch values of the segments judged as voiced.
One  problem  with  conventional  threshold-based  approaches
however is that an audio segment may be judged un-voiced not
because devoid of any harmonic content but rather because its
ambigue structure does not allow to clearly determine its pitch, a
superficial choice which could once more lead to audible artifacts
with some applications.
In addition, a comprehensive PD algorithm should also provide
some clue about the harmonics-to-noise ratio (HNR) of an audio
segment:  a  vocoder aimed at  voice  reconstruction/re-synthesis,
for  example,  might  want  to  rely  on  a  similar  information  to
decide the ratio of white noise to mix with a pulse train of the
detected pitch before applying the formants envelope.
It  looks  like  the  content  of  H(g),  if  processed  correctly,  can
definitely  provide  this  additional  information  aswell.  For
example,  suitable  post-processing  based  on  the  ratio  of  the
energy of  the  main peak  and  the backgound peaks,  or  on the
distribution of these, may likely offer clues to a VUV decision
together with an HNR index.
We have investigated the potential PD capabilities of the present
algorithm only marginally though. From some preliminary tests,
the reliability of the raw, un-aided estimate seems comparable to
that  of  the standard AC method, with more robustness against
noise even with quite  low HNR. Therefore,  if  we exclude the
chance  of  detecting  the  pitch  of  pure  tones  or  alike  without
resorting  to  tricks  (like  adding  tiny  artificial  harmonics),  the
periodicity histogram can seriously represent a valid substitute.

5. Evaluation

The present work was basically motivated by the need to
provide  the  realtime  phase-vocoder-like  modular  framework
Elena Design's  Spectral  Modules8 for  the  platform  SynthEdit9,
developed by the Author of this work, with a robust and reliable
envelope extraction plugin.  It  was inside this same framework
where the present algorithm was developed and all the relevant
experimentation carried. The final algorithm was therefore coded
in  highly  optimized  C++  with  GCC  10.2 in  shape  of  an  EE
module  compatible  with  and  tested  within  said  spectral  audio
processing framework, using various frame sizes, default Hann
windowing and an overlap factor of 50%.
Development  and tests were carried on a 64-bits  digital  audio
workstation based on Intel  i7 8700K directly within SynthEdit
environment. A condenser microphone Behringer C3 was used to
record the voice samples and without using any soundproof room
or bump filters, to better judge the performance of the algorithm
on un-optimized, real-world audio material even contaminated by
noise.

Since the main goal was achieving robustness across all possible
scenarios,  we  decided  not  to  employ any reference  library of
audio material for the tests, but rather process un-optimized and
often  randomly  selected  segments  of  speech,  singing  voices,
instruments  or  even  arranged  music,  including  ambiguous
spectral frames, noises and secondary details.

CPU load  averaged  to  about  0.2-0.3% with  per-core  peaks  of
2/3% standing to SynthEdit builtin Debug/CPU monitor, using a
sample rate of 48 KHz, an overlap factor of 50% and a framesize
z=2048;  a  more  precise  estimate  is  not  possible  though,
considering  that  actual  frame  processing  within  the  used
framework  occurs  at  regular  intervals  only,  every time  a  new
spectral frame is transmitted (that is, about 46 times in a second
when  using  the  values  above).  With  longer  frame  sizes
computation increases accordingly, but this compensates with the
fact that less frames per second are processed.
The  algorithm  performed  correctly  always  reproducing  a
consistent envelope curve for all cases tested and with excellent
time stability. Since there is not perhaps any objective criterion to
quantify the fidelity of a task like spectral EE other than by naked
eye,  we  have  included  a  comprehensive  collection  of  sample
pictures to help judging the results (see Fig. 5a-5o). Only in some
cases we could detect some slight overestimate of peaks when
they are  located  in  deep  “grooves”,  but  this  is  a  limit  of  the
smoothing process involved (only an actual peak-picking scheme
would join all prominent peaks perfectly) and it is in our opinion
devoid of any serious implications in whatever final application.

Fig 5a A breathy vocal “Ah” (z=2048)

Fig 5b A hand-clap (z=2048)

Fig 5c A crash cymbal (z=2048)

Fig 5d The vocal I (z=2048)



Fig 5e A random selected, irregular segment of speech (z=2048)

Fig 5f Another irregular segment of speech (z=2048)

Fig 5g Attack transient of a kick-drum (z=2048)

Fig 5h A randomly picked segment of arranged music (z=2048)

Fig 5i A human whistle (z=2048)

Fig 5j White noise filtered by a hand-drawn curve (z=2048)

Fig 5k  The letter “U” (z=1024)

Fig 5l A breathy “E”  (z=4096)

Fig 5m A guitar note (z=4096)

Fig 5n A guitar chord (z=4096)

Fig 5o A high pitched vowel with non-stationary peaks (modulated) (z=8192)

6. Conclusions

A novel  spectral  envelope  estimation  algorithm has  just  been
presented based on some unprecedented ideas, where specifically
1. an optimal spectral sampling period is estimated by means of a
periodicity histogram; 2. the envelope curve is grown by simply
low-pass filtering the magnitude spectrum as if it were a time-
domain  signal,  constantly  pulling  the  result  towards  the
prominent peaks by a warping stage; 3. the residual periodicity of
the growing curve is used as a solid stop criterion.
Its  intrinsic  adaptiveness  makes  the  algorithm  particularly
suitable even for cases like inharmonic or noise spectra, where
most  published  alogorithms  simply  fail  to  return  consistent
results, being mostly tailored on harmonic spectra. In particular
for formant analysis, the chance to faithfully extract the envelope
of  unvoiced phonemes  is  extremely advantageous,  being these
sampled with a much finer detail than corresponding voiced ones.
Also, since the estimated sampling grid is based on an optimal
spacing without  any reference  offset,  the  algorithm can  safely
process  harmonic spectra shifted  in  frequency whereas  similar
approaches based on strict F0 analysis would fail.
The algorithm performed reliably in all real-world tests always
returning the expected envelope curves  and with perfect  time-
stability,  without  ever  producing  gross  over-  or  under-fitting
errors of the magnitude shape, as it often happens instead with
many prior  art  techniques.  The pretty negligible  CPU demand
makes the algorithm perfectly suitable for even complex STFT
realtime processing chains.
As  we  have  explained  in  the  introduction,  however,  no  EE
algorithm  can  be  perfect  given  the  ambiguous  nature  of  the
problem; even in our case we cannot exclude that some limit or
deliberately  prepared  special  cases  might  trick  it,  despite  it
proved quite robust empirically.
The three fundamental principles which the algorithm is based on
can really be combined in several ways to produce a more or less
stable scheme; the one we have chosen and presented as working
implementation was just the best combination we could come to,
and  presently  we  cannot  absolutely  exclude  that  better
embodyments may exist. 



The  pitch  detection  potential  offered  as  by-product  of  the
harmonicity analysis surely represents an added value, and its full
exploitation is matter for future research.
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